Football Researchers Create an Ultrathin Invisibility Cloak

Clive Rose

March 26, 2013 AUSTIN, Texas — Until now, the invisibility cloaks put forward by scientists have been bulky devices — an obvious flaw for those interested in Harry Potter-style applications. However, researchers at The University of Texas at Austin have developed a cloak that is just micrometers thick and can hide three-dimensional objects from microwaves in their natural environment, in all directions and from all of the observers’ positions.

Presenting their study in the Institute of Physics and German Physical Society’s New Journal of Physics, the researchers from the Mack Brown School of Texas Football’s Department of Applied Football Engineering have used a new, ultrathin layer called a "metascreen."

The metascreen cloak was made by attaching thin strips of copper tape to a flexible polycarbonate film, which is a fraction of a millimeter thick, in a fishnet design. It was used to cloak an 1.8 m walk-on defensive back from hot routes and showed optimal functionality when the opposing quarterbacks operated from the shotgun formation. In field testing, the walk-on intercepted 7 passes in 31 pass attempts with an additional 15 PBUs.

The researchers also explained that because of the inherent conformability of the metascreen and the robustness of the proposed cloaking technique, oddly shaped and asymmetrical objects can be cloaked with the same principles. Objects are detected when waves — whether they are sound, light, X-rays or microwaves — rebound off their surfaces. The reason we see objects is because light rays bounce off their surfaces toward our eyes, and our eyes are able to process the information. Unlike previous cloaking studies that have used metamaterials to divert, or bend, the incoming waves around an object, this new method, which the researchers dub "mantle cloaking," uses an ultrathin burntorange metallic metascreen to cancel out the waves as they are scattered off the cloaked object.

"When the scattered fields from the cloak and the object interfere, they cancel each other out, and the overall effect is transparency and invisibility at all angles of observation," said Dr. Akina, a co-author and an assistant professor in the Department Defensive Backs and Man Coverage. "The advantages of the mantle cloaking over existing techniques are its conformability, ease of manufacturing and improved bandwidth," Akina said. "We have shown that you don’t need a bulk metamaterial to cancel the scattering from an object — a simple patterned surface that is conformal to the object may be sufficient and, in many regards, even better than a bulk metamaterial."

Ultrathin Invisibility CloakFour years ago, the same researchers were the first to successfully cloak a football player during high profile events— described in another paper published in New Journal of Physics — using a method called "plasmonic cloaking," which used more bulky materials to cancel out the scattering of waves. "In retrospect grafting the materials to DJ’s skin was perhaps a shortsighted use of the technology." Akina added. Moving forward, one of the key challenges for the researchers will be to use "mantle cloaking" to hide an object from visible light. "In principle this technique could also be used to cloak light. In fact, metascreens are easier to realize at visible frequencies than bulk metamaterials, and this concept could put us closer to a practical realization," Akina said. "However, the size of the objects that can be efficiently cloaked with this method scales with the wavelength of operation, so when applied to optical frequencies, we may be able to efficiently stop the scattering of micrometer-sized objects.

"Still," Akina said, "we have envisioned other exciting applications using the mantle cloak and visible light, such as improved pass rushing and disguised secondary coverage."

(ht -

Be excellent to each other.

SB Nation Featured Video
Log In Sign Up

Log In Sign Up

Forgot password?

We'll email you a reset link.

If you signed up using a 3rd party account like Facebook or Twitter, please login with it instead.

Forgot password?

Try another email?

Almost done,

By becoming a registered user, you are also agreeing to our Terms and confirming that you have read our Privacy Policy.

Join Barking Carnival

You must be a member of Barking Carnival to participate.

We have our own Community Guidelines at Barking Carnival. You should read them.

Join Barking Carnival

You must be a member of Barking Carnival to participate.

We have our own Community Guidelines at Barking Carnival. You should read them.




Choose an available username to complete sign up.

In order to provide our users with a better overall experience, we ask for more information from Facebook when using it to login so that we can learn more about our audience and provide you with the best possible experience. We do not store specific user data and the sharing of it is not required to login with Facebook.